

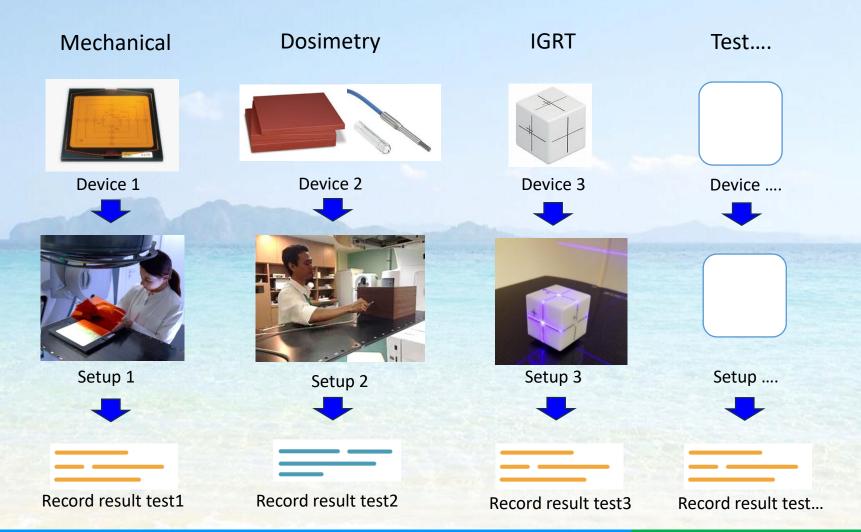
Move Forward: More **effective** and **efficient** with automatic QA in RT

Sawanee Suntiwong

Radiation Oncology Department, Chulabhorn Hospital, Chulabhorn Royal Academy

- ☐ Automation in Machine QA
- ☐ Automation in Patient Specific QA

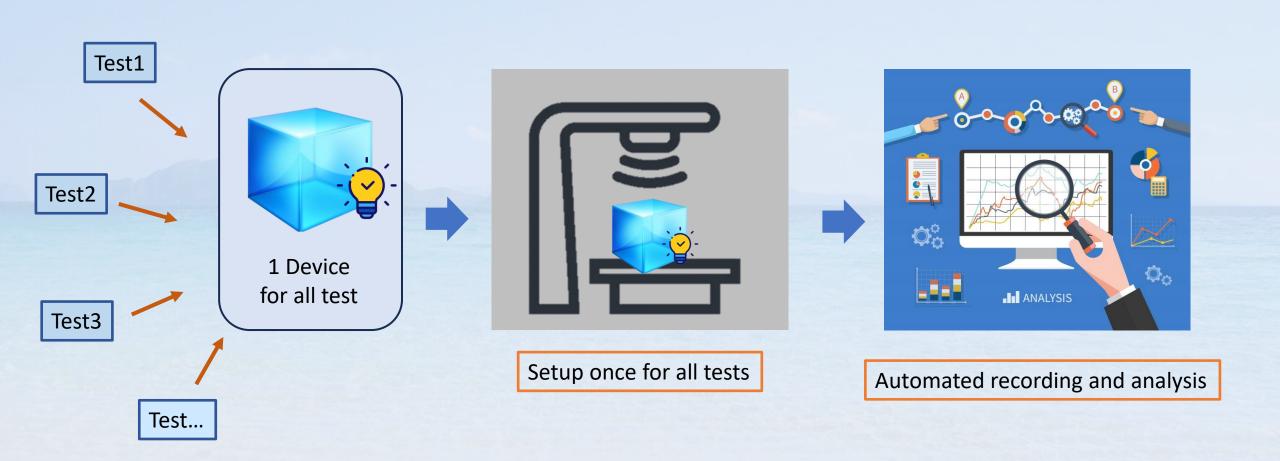
What is Automation?

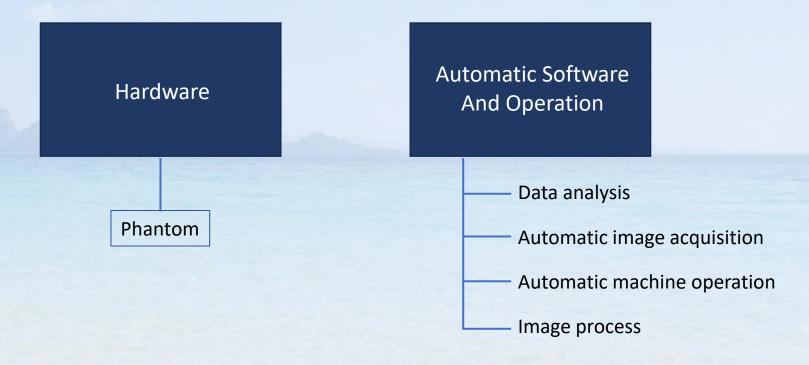

Automation is the technique, method, or system of operating or controlling a process by highly automatic means reducing human intervention to a minimum.

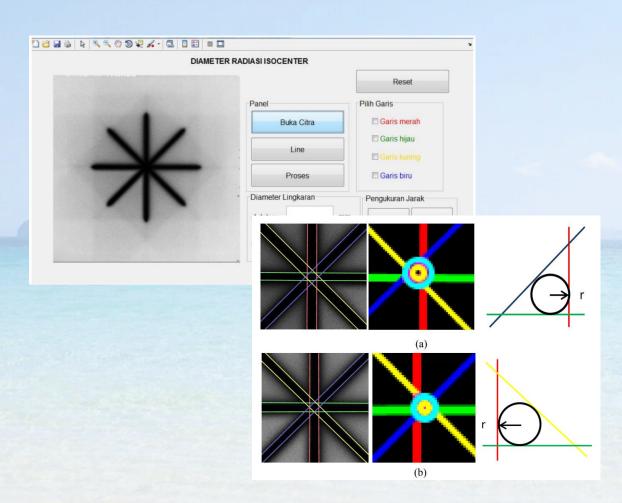
https://www.make.com

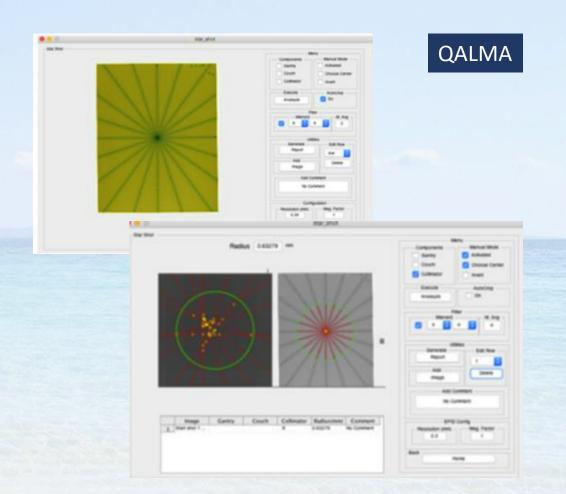
Thai Medical Physicist Society

Traditional QA system (Manual)




Automation QA system


Thai Medical Physicist Society


Automation QA system

Simple Automated Software: MATLAB

Muhammad Irsal et al.: Journal of Physics: Conf. Series 855 (2017)

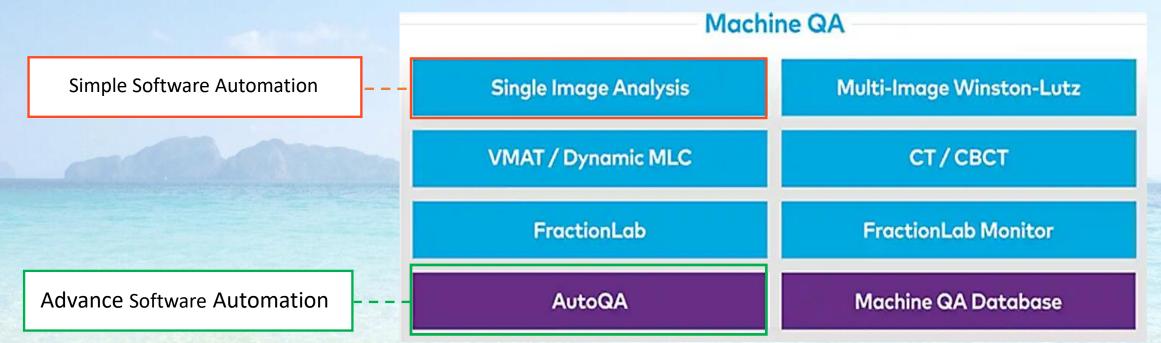
M.M. Rahman et al. / SoftwareX 7 (2018) 101–106

The 15th Annual Scientific Meeting 1-3 March 2024, Trang, Thailand

Advance Automated Software: Commercial

Use of an automated software module for monthly routine Machine QA tests

E. Bonanno,^a G.R. Borzì,^a N. Cavalli,^a M. Pace,^a G. Stella,^{b,*} L. Zirone^a and C. Marino^a

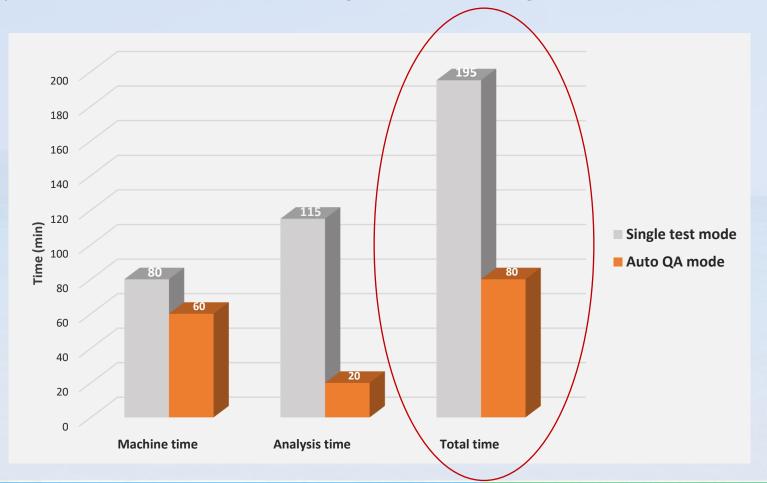

^aMedical Physics Department, Humanitas Istituto Clinico Catanese, SP 54 n. 11, Contrada Cubba Marletta, 11, 95045 Misterbianco, Italy ^bDPhysics and Astronomy Department E. Majorana, University of Catania, Via S. Sofia, 64, 95123 Catania, Italy

2023 JINST 18 T07010



Bonanno et al.

Number of collected data between Single test mode and Auto QA mode



Bonanno et al.

Comparative of time consuming between single test mode and Auto QA mode

Bonanno et al.


AutoQA Builder

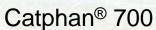
Create QA plans in TPS:

- Daily QA
- Monthly QA
- Quarterly QA
- Other periodic QA plans

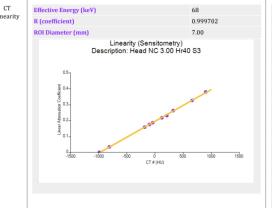
AutoQA Analysis

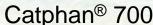
To analyze images collected on the EPID




Schmidt et al. J Appl Clin Med Phys 2021; 22:6:26–34

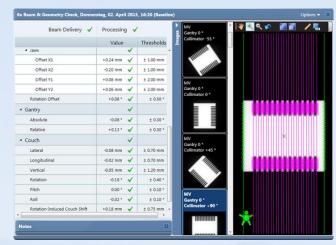
Phantom and automatic analysis software




- **CT Linearity**
- Slice thickness
- Modulation transfer function
- Low contrast
- **Contrast Noise ratio**
- Uniformity index

CI # LI	ilearity
Expected	Measured
Contrast Scale	2.000E-004 1/CT(HU)cm
Air -1,000.0 ± 50.0	-989.8
Acrylic 120.0 ± 20.0	121.5
Bone50 680.0 ± 60.0	659.2
LDPE -90.0 ± 20.0	-98.2
Bone20 180.0 ± 20.0	209.5
Teflon 950.0 ± 50.0	899.8
Polystyrene -35.0 ± 20.0	-41.6
Delrin 340.0 ± 20.3	322.8
Lung -810.0 ± 80.0	-812.1
PMP	-184.5

Dedicated phantom and Automatic analysis software


IsoCal Phantom

Machine Performance Check (MPC) Setup

MPC Operation

MPC Evaluation

Auto QA in Radiotherapy: Hardware and software

Beam Check Tests		Geometry Tests		
Beam output constancy	TG-142:Daily QA	Radiation Isocenter Size		
Beam uniformity		Coincidence with MV isocenter	TG-142:Daily QA	
Beam center shift		Coincidence with kV isocenter	TG-142:Daily QA	
		Collimator readout accuracy		
		Gantry readout accuracy		
		MLC leaf position and reproducibility		
		Jaw position accuracy	TG-142:Daily QA	
		Couch position accuracy up to 6D		

How reliable is the MPC?

RADIATION ONCOLOGY PHYSICS

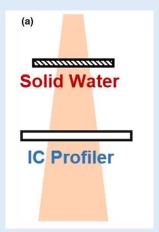
Independent validation of machine performance check for the Halcyon and TrueBeam linacs for daily quality assurance

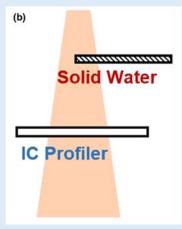
```
Yuting Li<sup>1,2</sup> | Tucker Netherton<sup>1,3</sup> | Paige L. Nitsch<sup>3</sup> | Song Gao<sup>3</sup> | Ann H. Klopp<sup>3</sup> |
Peter A. Balter<sup>3</sup> | Laurence E. Court<sup>3</sup>
```

J Appl Clin Med Phys 2018; 19:5:375–382

¹The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, USA

²Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA

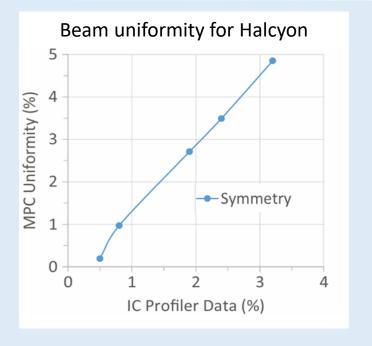

³Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA



MPC Error detection: Beam Check Tests

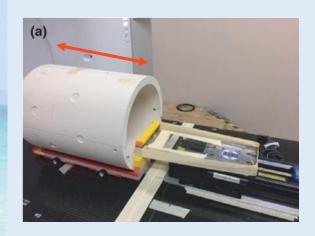
Beam Check Tests	Error detection test		
beam check lests	Halcyon	Standard Device	
Beam output constancy	Add solid water slabs	IC Profiler	
Beam uniformity	Add the half of solid water slabs	IC Profiler	

Measurement set up for beam output constancy

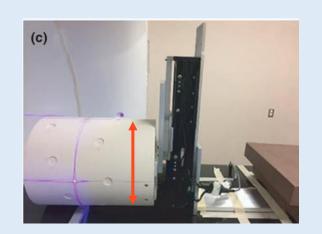

Measurement set up for beam uniformity

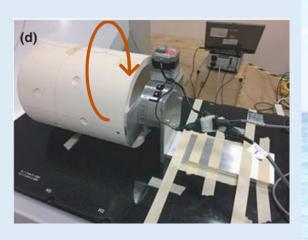
Results: Beam Check test

Beam check tests	MPC reading – IC profiler	
beam check tests	Halcyon	
Beam output constancy (%)	1.31 ± 0.48	



MPC Error detection test: Geometry Tests


MPC Phantom shift during MPC test


Couch Longitudinal

Couch Lateral

Couch Vertical

Relative Gantry rotation

Results: Geometry test

Goometry tests	MPC reading - known value	
Geometry tests	Halcyon	
Couch Translation		
Longitudinal	0.02 ± 0.03 mm	
Lateral	0.09 ± 0.06 mm	
Vertical	0.02 ± 0.02 mm	

Results of MPC relative gantry rotation tests

Machine	Angle offset (degree)	MPC results (degree)
	0.1	0.04 (0.02 – 0.05)
	0.3	0.16 (0.13 – 0.16)
	0.5	0.30 (0.23 – 0.37)
Halcyon	1.0	0.64 (0.47 – 0.82)
	1.5	0.96 (0.71 – 1.21)
	2.0	1.30 (0.96 – 1.64)
	5.0	3.38 (2.47 – 4.29)

The MPC is capable of detecting errors in beam constancy and mechanical parameters to a level that is sufficiently accurate to be effectively used for daily QA

RADIATION ONCOLOGY PHYSICS

Evaluation of the truebeam machine performance check (MPC): mechanical and collimation checks

Michael P Barnes^{1,2,3} | Peter B Greer^{1,3}

Department of Radiation Oncology, Calvary Mater Hospital Newcastle, Waratah, NSW, Australia ²School of Medical Radiation Sciences, University of Newcastle, Newcastle, NSW, Australia School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia

J Appl Clin Med Phys 2017; 18:3:56-66

Evaluation of the truebeam machine performance check (MPC): OBI X-ray tube alignment procedure

Michael P. Barnes^{1,2,3} | Dennis Pomare¹ | Frederick W. Menk³ | Buiron Moraro⁴

Peter B. Greer^{1,3}

J Appl Clin Med Phys 2018; 19

Daily Quality Assurance Efficiency Evaluation Using SunCHECK Machine and Machine Performance Check

Cassandra Stambaugh 1, Jessica Yancey 1, Utkarsh Shukla 1, Christopher Melhus 1, Nathaniel Stambaugh 2 Radiation Oncology, Tufts Medical Center, Boston, USA 2. Mathematics, Dexter Southfield School, Brookline, USA

2023 Stambaugh et al. Cureus 15(3)

Evaluation of the truebeam machine performance check (MPC) geometric checks for daily IGRT geometric accuracy quality assurance

Michael P Barnes^{1,2,3} | Peter B Greer^{1,3}

J Appl Clin Med Phys 2017; 18:3:200-206

A multi-institutional evaluation of machine performance check system on treatment beam output and symmetry using statistical process control

Diana Binny^{1,2} | Trent Aland^{1,2} | Ben R. Archibald-Heeren³ | Jamie V. Trapp² | Tanya Kairn^{2,4} | Scott B. Crowe^{2,4}

J Appl Clin Med Phys 2019; 20:3:71–80

MPC is sufficiently accurate to be effectively used for daily QA

การประกันคณภาพเครื่องฉายรังสี

Su TrueBEAM

ผ่ายรังสีวิทยา โรงพยาบาลจฬาลงกรณ์ สภากาชาดให

ด้วยวิธี Machine Performance Check (MPC)

ournal of Thai Association of Radiation Oncology Vol. 24 No. 1 January - June 2018

RADIATION ONCOLOGY PHYSICS

WILEY

Predictive quality assurance of a linear accelerator based on the machine performance check application using statistical process control and ARIMA forecast modeling

Wayo Puyati^{1,2} | Amnach Khawne¹ | Michael Barnes^{3,4} | Benjamin Zwan^{4,5} Peter Greer^{3,4} | Todsaporn Fuangrod⁶

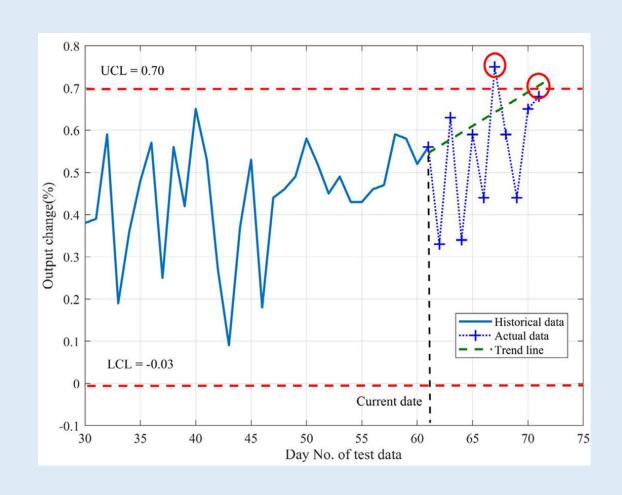
J Appl Clin Med Phys 2020; 21:8:73–82

¹Department of Computer Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand

²Department of Mathematics Statistics and Computer, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand

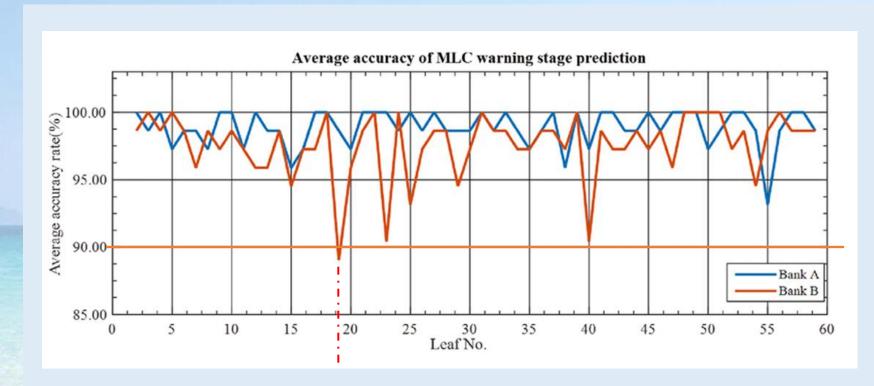
³Department of Radiation Oncology, Calvary Mater Hospital Newcastle, NSW, 2298, Australia

⁴School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, 2308, Australia


⁵Central Coast Cancer Centre, Gosford Hospital, Gosford, NSW, 2250, Australia

⁶Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand

Example of trend line to detect the output change exceeded the upper control limit



Wayo Puyati et al.

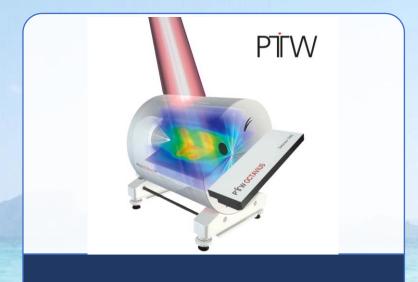
The warning stage prediction using the average accuracy for individual leaf of MLC

Bank B:19th

Predictive quality assurance with MPC:

- Preventative maintenance, which could lead to improved Linac performance
- Reduction in unscheduled Linac downtime

Wayo Puyati et al.

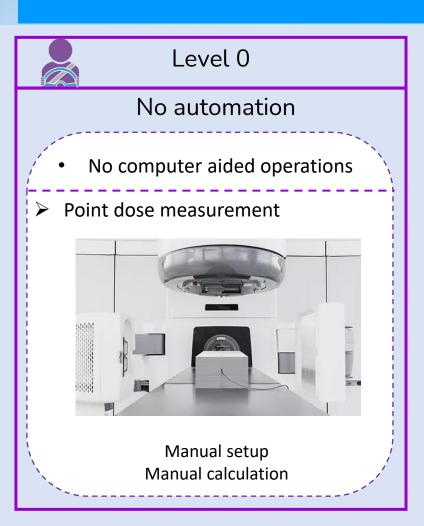


Patient-Specific QA Automation

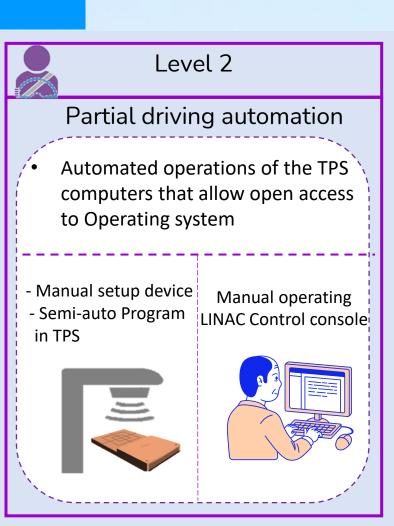
Patient-Specific QA Automation

Measurement-based

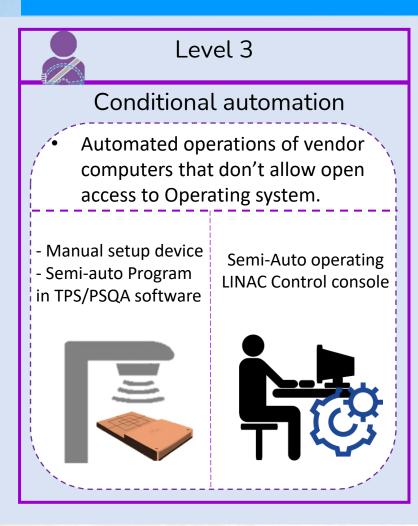
- Phantom
- Detector

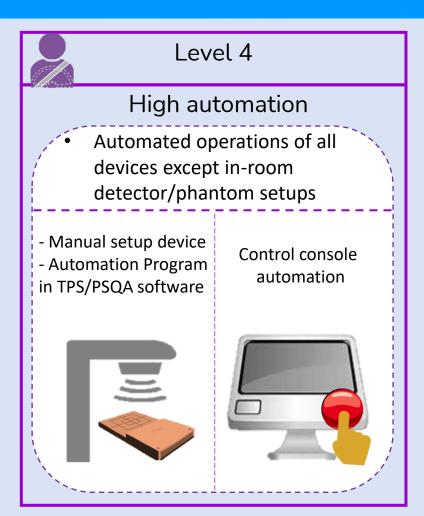

Software-based

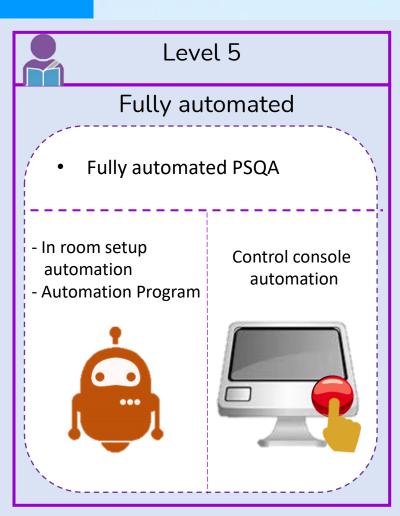
- Commercial software
- Log file
- Al



Automation levels of measurement-based PSQA

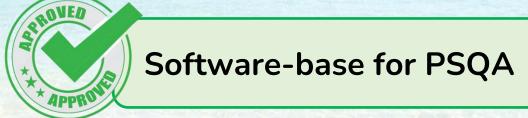



Jingqiao Zhang et al. Int. J. Medical Physics, Clinical Engineering and Radiation Oncology



Automation levels of measurement-based PSQA

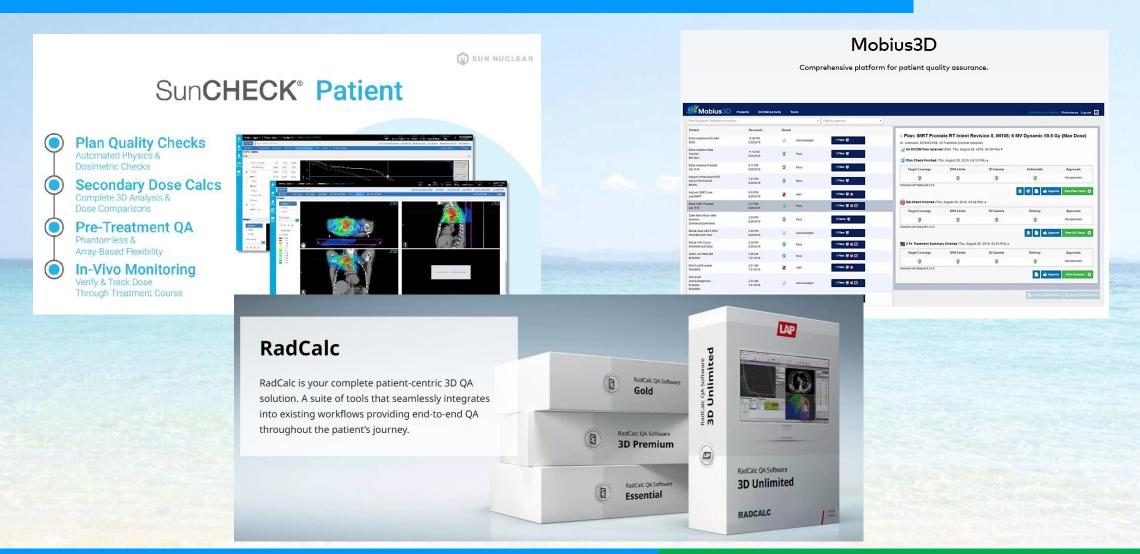
Jingqiao Zhang et al. Int. J. Medical Physics, Clinical Engineering and Radiation Oncology


Thai Medical Physicist Society

Software-based

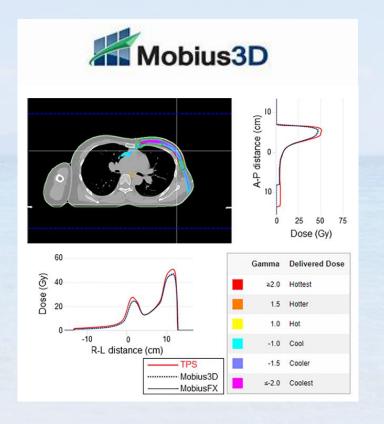
If machine QAs are performed on the delivery system at a high enough performance and frequency

Move forward


Siochi RAC. Med Phys.2013;40(7)

Nina Cavalli et al. J Appl Clin Med Phys. 2024;25:e14156

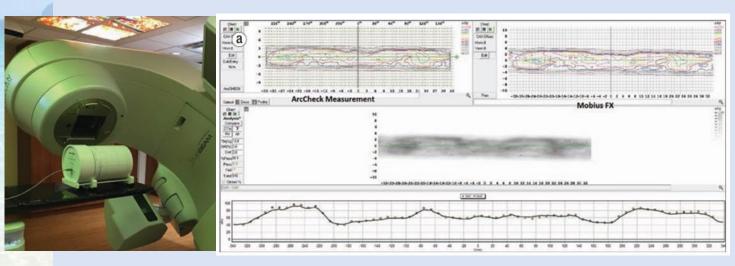
Commercial software

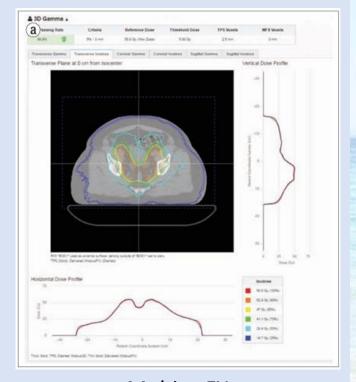


- Mobius3D is a secondary independent dose verification system.
 - Commissioning needed:
 - Percentage depth dose
 - Off-axis ratio
 - Output factor
 - Dosimetric leaf gap
 - CT HU

Clinical experience with machine log file software for volumetric-modulated arc therapy techniques

Luis Alberto Vazquez-Quino, PhD, Claudia Ivette Huerta-Hernandez, PhD, and Dharanipathy Rangaraj, PhD


Proc (Bayl Univ Med Cent) 2017;30(3):276–279


Thai Medical Physicist Society

Software-based evaluation

- Compare between Mobius FX, ArcCheck and TPS
 - 30 VMAT plans (2 or 3 Arcs)
 - Varian TrueBeam linear accelerator
 - Gamma criteria: 3%/3 mm and 2%/2 mm

Mobius FX

Luis Alberto Vazquex-Quino et al. Proc (Bayl Univ Med Cent) 2017

Software-based evaluation

VMAT QA gamma comparison results among Mobius FX, ArcCheck measurement

ArcCheck vs Eclipse		Mobius FX vs Eclipse	
3%3mm	2%2mm	3%3mm	2%2mm
99.48%	96.80%	99.96%	98.80%

Luis Alberto Vazquex-Quino et al. Proc (Bayl Univ Med Cent) 2017

Software-based: Attention

- Small field size
- Lung and bone region
- Density override
- Type of accelerator
- Off-axis
- Dosimetric leaf gap correction factor

Yair Hillman et al.

Jihun Kim et al. Physica Medica 74 (2020)

Yuji Nakaguchi et al. Japanese Society of Radiological Technology and Japan Society of Medical Physics 2019

Reference: Software-based PSQA

Is it still necessary to perform measured based pre-treatment patient-specific QA for SRS HyperArc treatments?

Nina Cavalli¹ | Elisa Bonanno¹ | Giuseppina R. Borzi¹ | Alessia D'Anna²

Martina Pace¹ | Giuseppe Stella² | Lucia Zirone¹ | Carmelo Marino¹ |

J Appl Clin Med Phys. 2024;25:e14156.

Validation of secondary dose calculation system with manufacturerprovided reference beam data using heterogeneous phantoms

Yuji Nakaguchi¹ · Yuya Nakamura¹ · Yohei Yotsuji¹

Japanese Society of Radiological Technology and Japan Society of Medical Physics 2019

Assessment of the Dosimetric Performance of the Mobius3D against Portal Dose Measurements in Patient-specific Quality Assurance

Yasmine Joy M. Labagnoy, Sornjarod Oonsiri¹, Mananchaya Vimolnoch¹, Sakda Kingkaew¹

Department of Radiology, Faculty of Medicine, Chulalongkorn University, ¹Department of Radiology, Division of Radiation Oncology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand

Journal of Medical Physics | Volume 48 | Issue 4 | October-December 2023

Evaluation of a novel secondary check tool for intensitymodulated radiotherapy treatment planning

Jonas D. Fontenota

Department of Physics, Mary Bird Perkins Cancer Center, Baton Rouge, LA, USA jfontenot@marybird.com

JournAL of APPLIEd cLinicAL MEdicAL PHYSIcS, VoluME 15, nuMBEr 5, 2014

Detailed evaluation of Mobius3D dose calculation accuracy for volumetricmodulated arc therapy

Jihun Kim^a, Min Cheol Han^a, Eungman Lee^b, Kwangwoo Park^a, Kyung Hwan Chang^a, Dong Wook Kim^a, Jin Sung Kim^a,*, Chae-Seon Hong^a,*

Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea

Department of Radiation Oncology, Ewha Womans University College of Medicine, Seoul, South Korea

Physica Medica 74 (2020) 125-132

Clinical performance of FractionLab in patient-specific quality assurance for intensity-modulated radiotherapy: a retrospective study

Se An Oh¹, Sung Yeop Kim², Jaehyeon Park¹, Jae Won Park¹, Ji Woon Yea¹

¹Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu, Korea

²Department of Physics, Yeungnam University, Gyeongsan, Korea

Med Sci 2022;39(2):108-115

The 15th Annual Scientific Meeting 1-3 March 2024, Trang, Thailand

"Advanced Medical Physics Improves Patient Outcomes"

The 2023 Biomedical Engineering International Conference (BMEiCON-2023)

Utilizing Statistical Process Control Analysis for Calculation-Based Patient-Specific Quality Assurance in Online Adaptive Radiotherapy

Thunpisit Mundee
Radiation Oncology Department, Chulabhorn Hospital
Chulabhorn Royal Academy,
Bangkok, Thailand
Thunpisit.mun@cra.ac.th

Chirasak Khamfongkhruea

Medical Physics Program, Princess Srisavangavadhana
College of Medicine, Chulabhorn Royal Academy,
Bangkok, Thailand
Chirasak.kha@cra.ac.th

The 2023 Biomedical Engineering International Conference (BMEiCON-2023)

Thunpisit Mundee

Abstract:

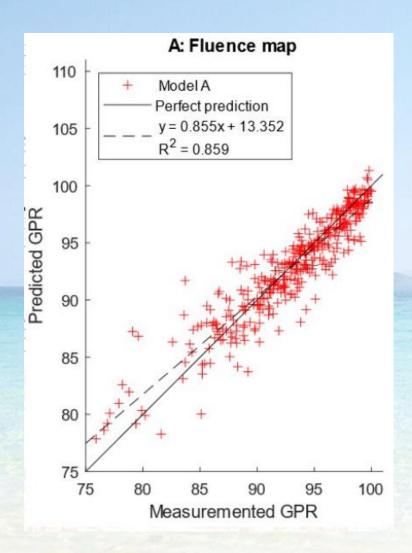
This study utilized statistical process control analysis to determine the gamma passing rate limits in calculation-based patient-specific quality assurance (PSQA) using Mobius3D. A total of 50 PSQA Mobius3D plans were derived from 168 online adaptive plans and constructed into a control chart, calculating upper control limit (UCL), center line (CL), and lower control limit (LCL) values. The PSQA process quality was further evaluated through the process capability index. The results revealed that the LCL values for the 3%/2mm, 2%/2mm, and 1%/1mm criteria were 91.66, 76.34, and 12.13, respectively. The corresponding C pm values were 1.149, 1.098, and 0.760, while the C pml values were 2.430, 2.297, and 1.612. These findings indicated a high PSQA process quality for the 3%/2mm and 2%/2mm criteria, evidenced by consistent and favorable C pm and C pml values. However, assessing the PSQA process quality for the 1%/1mm criterion raised concerns. The low LCL values suggested potential issues with precision and accuracy in evaluating treatment plans. Additionally, the lack of consistency between the C pm and C pml values further indicated that the 1%/1mm criterion might not be suitable for clinical use with Mobius3D. Considering these results, caution should be exercised when employing the 1%/1mm criterion in the PSQA process. It is essential to prioritize accuracy and reliability to ensure the delivery of highquality patient-specific treatment plans in radiotherapy. This study offers valuable insights for optimizing the PSQA process with Mobius3D and enhancing patient care and safety.

Gamma passing rate 3%2mm ≥ 92%

Thunpisit Mundee

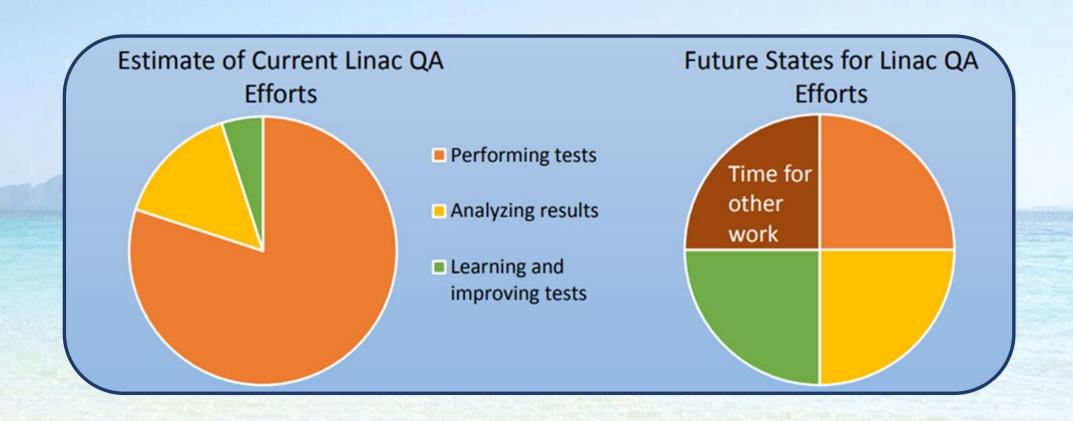
Virtual patient-specific quality assurance in online adaptive radiotherapy using deep learning-based 2-dimensional information

Kampheang Nimjaroen


Major advisor Dr. rer, Medic. Chirasak Khamfongkhruea

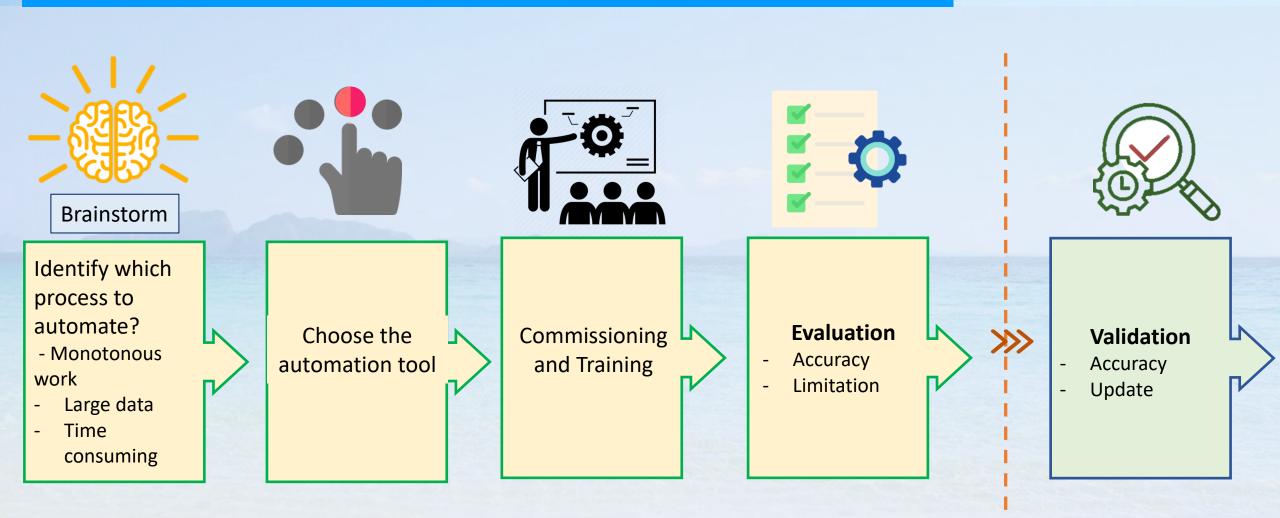
Co advisor Dr. Sangutid Thongsawad

Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy


- ➤ 2D information can be used to create prediction model for virtual-based PSQA.
- ➤ MLC velocity map enhance the prediction model in combined with fluence maps.

This approach has the potential to establish the foundation for virtual PSQA in the online Adaptive radiation therapy treatment process

Kampheang Nimjaroen



Schmidt et al. J Appl Clin Med Phys 2021; 22:6:26–34

Implementation

Thank you